Lessons from field synopses Moving towards an online encyclopaedia

Paolo Boffetta IARC, Lyon, France

Criteria for assessment of cumulative evidence on genetic associations

- 1. Epidemiological credibility
 - amount of evidence
 - ii. replication
 - iii. protection from bias

First letter = amount Second letter = replication Third letter = protection from bias

BAA	BBA	BCA
BAB	BBB	BCB
BAC	BBC	BCC

Strong evidence
Moderate evidence
Weak evidence

CAA	CBA	CCA
CAB	CBB	ССВ
CAC	CBC	CCC

if epidemiological credibility is strong:

- 2. Biological plausibility
- 3. Clinical and public health importance

Venice criteria – work in progress

Amount of evidence

- Thresholds may be defined based on sample size, power, or false discovery rate considerations
- The frequency of the genetic variant of interest should be accounted for

Issues with amount of evidence

- Sample size
- Statistical significance
- Alternative approaches to weight the amount of evidence
 - Bayesian methods (FPRP, BFDP)

Replication

- Statistical considerations
 - $-I^2$, etc.
- Epidemiological considerations
 - comparability of phenotyping, genotyping, and analytical models

Issues with replication

- Heterogeneity of effect may reflect truth
 - haplotype structure of the population
 - presence vs. magnitude of effect
 - GxE interactions
 - -study design
- Heterogeneity of phenotype

Gene-environment interactions

IARC Monographs Classification scheme

Combinations	which	fit in	thic class	
Compinations	WHICH	111	uiis ciass	

		Combinations which fit in this class			
Class		Human evidence	Animal evidence	Other evidence	
1	Established	S	Any	Any	
		L	S	+	
2A	Probable	L	S	+/-	
		I or NA	S	+	
2B	Possible	L	< S	Any	
		I or NA	S	+/-	
		I or NA	L	+	
3	Not	I or NA	L	+/-	
	classifiable	Not elsewhere classified			
		I or NA	-	-	
4	Not	-	_	Any	

IARC Monographs on the Evaluation of Carcinogenic Risks to Humans

VOLUME 89

Smokeless Tobacco and Some Tobacco-specific N-Nitrosamines

LYON, FRANCE 2007

S: sufficient

L: limited

I: inadequate

+: strongly positive

+/-: less than strongly positive

-: strongly negative

NA: not available

International Agency for Research on Cancer

Centre International de Recherche sur le Cancer

Agents evaluated in IARC Monographs programme, Vol. 1-98

Class	N agents
1 – Established	102
2A – Probable	69
2B – Possible	246
3 – Not classifiable	516
4 – Not carcinogens	1
Total	934

Cancer mortality in France attributable to established risk factors

Risk factor	Men	Women	Both sexes
Tobacco smoking	33.4%	9.6%	23.9%
Alcohol drinking	9.4%	3.0%	6.9%
Infectious agents	3.3%	4.4%	3.7%
Occupational exposures	3.7%	3.4%	2.4%
Overweight and obesity	1.1%	2.3%	1.6%
Lack of physical activity	0.5%	3.2%	1.6%
Exogenous hormones	-	2.2%	0.9%
Ultraviolet radiation '	0.6%	0.9%	0.7%
Reproductive factors	-	1.1%	0.4%
Pollutants	0.1%	0.3%	0.2%
Total	45.2%	23.5%	36.7%

NB: attributable risks do not add up!

Alcohol drinking and head/neck cancer

Alcohol is a known carcinogen: the mechanisms are unclear

ADH genes govern the rate of elimination of alcohol to acetaldehyde

Individuals may metabolize ethanol up to 100 times faster than others depending on *ADH2* genotype

ADH2*T (C/T+T/T) vs C/C and head/neck cancer

3 large studies - 3800 cases and 5000 controls 141 Hapmap SNP from 7 *ADH* genes 6 missense variants in 5 *ADH* genes included in the analysis

Tumour phenotypic variation

- Historically, cancers in a particular organ are grouped as one disease
- Tumour gene expression analysis identifies subtypes that differ in response to therapy and prognosis
- It is plausible that the subtypes are also aetiologically distinct

Finnish emotional phenotypes

1.Furious delight 2.Endless laugh 3.Enormous joy

5. Deep sorrow

6.Bitter anger

Cluster analysis of tumour gene expression data

Breast cancer subtypes

Protection from bias – grade A

- Phenotype measurement, genotype measurement, confounding (population stratification) and selective reporting in meta-analyses
 - bias appraised to not exceed low levels
- No other demonstrable bias in any other aspect of the design, analysis or accumulation of the evidence

Protection from bias – grade B

- No strong biases apparent
- Information missing on whether major sources of bias have been minimized or accounted

Automated checks for bias

- OR <1.15
- Exclusion of first study
- Exclusion of HWE-violating studies or adjustment for HWE
- Test for small-study effect
- Test for excess of single statistically significant studies

Bias – additional considerations

- Differential genotype or phenotype misclassification
- Evidence for population stratification
- Inappropriate control selection in key studies
- etc.

Table 3 Typical biases and their typical impact on associations depending on the status of the evidence

		Likelihood of bias to invalidate an observed association		
Biases	Status of the evidence	Small OR <1.15	Typical OR 1.15-1.8	Large OR >1.8
Bias in phenotype definition	Not reported what was done	Unknown	Unknown	Unknown
	Unclear phenotype definitions	Possible/High	Possible/High	Possible/High
	Clear widely agreed definitions of phenotypes	Low/None	Low/None	Low/None
	Efforts for retrospective harmonization	Possible/High	Low	Low/None
	Prospective standardization of phenotypes	Low/None	Low/None	Low/None
Bias in genotyping	Not reported what was done	Unknown	Unknown	Unknown
	No quality control checks	Possible/High	Low	Low
	Appropriate quality control checks	Low	Low	Low/None
Population stratification	Not reported what was done	Unknown	Unknown	Unknown
	Nothing done ^a	Possible/High	Possible/High	Possible/High
	Same descent group ^b	Possible/High	Low	Low/None
	Adjustment for reported descent	Possible/High	Low	Low/None
	Family-based design	Low/None	Low/None	Low/None
	Genomic control, PCA or similar method	Low/None	Low/None	Low/None
Selective reporting biases	Meta-analysis of published data	Possible/High	Possible	Possible
	Retrospective efforts to include unpublished data	Possible/High	Possible	Possible
	Meta-analysis within consortium	Low/None	Low/None	Low/None

International Agency for Research on Cancer

Centre International de Recherche sur le Cancer

Beyond epidemiological credibility

- "Future empirical research and consensus development are needed to develop an integrated model for combining epidemiological and biological data..."
- Biological plausibility
- Clinical and public health importance

Biological plausibility – lines of evidence

- Function of the variant or associated gene, which may make it a plausible candidate for association with the phenotype under study
- Type of amino acid change, location, evolutionary conservation
- Transgenic animal models, gene expression studies
- Ad-hoc experiments vs. routinely annotated information

Criteria for biological plausibility

- Strength and consistency of biological effects
- Amount of data
- Number of different lines of corroborating evidence
- Relevance of the biological system to the phenotype
- Extent of replication
- Protection from bias

Biological plausibility

- Complex and variable information; difficult to generalize on the importance of each piece of information
- Examples of misleading use of additional evidence to support or refute an association
- Non-epidemiological evidence alone is unlikely to be sufficient to make an association highly credible

Criteria for clinical and public health importance

- Attributable risk
 - effect size
 - frequency of genetic variant in population
 - AR for multiple variants
- Type of phenotype
 - biological, endophenoype, hard clinical outcome
- Disease burden
 - incidence, severity, and mortality
- Interaction with identified modifiable environmental exposures
- Potential to prevent disease through intervention
 - Mendelian randomization insights

Relative risk, carrier frequency, and population attributable risk

Incorporating the three dimensions

- No detailed guidelines for rating biological plausibility and clinical/public health relevance
 - associations with weakly credible epidemiologic evidence and very strong biological plausibility
 - associations with strong epidemiologic
 credibility and very limited biological data

Moving towards an online encyclopaedia

- Performing the field synopses
 - selection of variants and phenotypes
 - entry criteria (e.g., number of studies)
 - inclusion of GWA results
 - who grades the evidence?
- Updates of field synopses
- Evolution of Venice criteria

A plea for a conservative approach in grading the evidence

- An 'A' rating should be definite
- All other ratings should be seen as preliminary and subject to change as evidence evolves
- A 'B' rating for an association with strong prior may help to identify areas for future research

Jean Huber - Le repas des philosophes (1772-73)